Двигатель с изменяемой степенью сжатия: принцип работы и особенности

По каким принципам работает двигатель Инфинити с изменяемой степенью сжатия, подробная информация

Первый серийный экземпляр двигателя с изменяемой степенью сжатия от Инфинити

Подробная информация о первом в мире бензиновом серийном двигателе с изменяемой степенью сжатия. Ему предсказывают большое будущее и говорят, что разработанная Инфинити технология станет большой угрозой для существования дизельных моторов.

Бензиновый поршневой двигатель, который может динамически изменять степень сжатия*, то есть величину, на которую поршень сжимает топливовоздушную смесь в цилиндре, давняя мечта многих поколений инженеров, разрабатывавших двигатели внутреннего сгорания. Некоторые автомобильные марки были как никогда близки к разгадке теории, были сделаны даже образцы таких моторов, например, успехов в этом достиг Saab.

Возможно у шведского автопроизводителя сложилась бы совершенно иная судьба, если бы в январе 2000 года Saab не был окончательно приобретен корпорацией General Motors. К сожалению, для заокеанского хозяина были не интересны подобные разработки и дело было приостановлено.

*Степень сжатия- объём камеры сгорания в момент, когда поршень находится в нижней мертвой точке, к объему, когда он подминается к верхней мертвой точке. Иными словами, это показатель сжатия поршнем воздушно-топливной смеси в цилиндре

Основной соперник был сломлен и Nissan, как второй потенциальный разработчик инновационной системы с изменяемым коэффициентом сжатия, продолжил путь в гордом одиночестве. 20 лет кропотливого труда, расчетов и моделирования не прошли даром, люксовое подразделение японской компании известное под брендом Infiniti представило окончательную разработку двигателя с изменяемой степенью сжатия который мы увидим под капотом модели 2018 Infiniti QX50. Станет ли ее разработка лебединой песней всех дизельных двигателей? Вопрос интересный.

2.0 литровый четырехцилиндровый турбированный силовой агрегат (расчетная мощность 270 л.с. и 390 Нм крутящего момента) получил наименование VC-T (Variable Compression-Turbocharged). Уже в названии отражены принцип его работы и технические данные. Система VC-T способна плавно и непрерывно динамически изменять степень сжатия от показателя 8:1 до 14:1.

Общий принцип действия системы двигателя VC-T можно описать следующим образом:

Особенность VC-T технологии в моторе заключается в способности приспосабливаться к условиям и плавно повышать или понижать высоту верхней мертвой точки поршней. Как следствие, изменяются фундаментальные свойства работы бензинового двигателя, в результате чего степень сжатия может изменяться от небольшой «бензиновой» 8:1 (для высокой производительности мотора и максимальной мощности), до «дизельной» 14:1 (которая дает двигателю высокий КПД). Сложная логика управления системами двигателя автоматически применяет оптимальные соотношения в зависимости от ситуаций.

Это схематичное простое описание принципа работы системы. На самом деле конечно же все гораздо сложнее.

Действительно силовые агрегаты с низкой степенью сжатия не могут обладать высокой производительностью. Все мощные двигатели, в особенности у гоночных машин, как правило, имеют очень высокую степенью сжатия, у многих болидов она превышает 12:1, и даже доходит до 15:1 у двигателей работающих на метаноле. Тем не менее такая высокая степень сжатия также способна сделать моторы более эффективными и экономичным. Это наводит на логичный вопрос, почему бы не делать двигатели, которые бы всегда обладали высокой степенью сжатия воздушно-топливной смеси? Зачем городить огород со сложными системами привода поршней?

Главная причина невозможности использования такой системы при работе на обычном низкооктановом топливе- появление при высокой степени сжатия и высокой нагрузке детонации. Бензин начинает не сгорать, а взрываться. Что понижает выживаемость узлов и агрегатов мотора и снижает его экономичность. По сути у бензинового двигателя происходит тоже самое, что и у мотора, работающего на ДТ, за счет высокого сжатия воспламеняется топливовоздушная смесь, правда происходит это не в нужный момент и это не предусмотрено конструкцией мотора.

В моменты «кризиса» сгорания топливо-воздушной смеси и приходит на помощь изменяемая степень сжатия, которая способна снижаться в моменты пиковой мощности с максимальным нагнетанием давления наддувом турбокомпрессора, что предотвратит мотор от детонации. И наоборот, во время работы на малых оборотах с малым давлением наддува, степень сжатия будет повышаться, увеличивая тем самым крутящий момент и снижая расход топлива.

В дополнение к этому, двигатели оснащаются системой регулируемых фаз газораспределения, что делает возможной работу двигателя по циклу Аткинсона в то время, когда от мотора не требуется отдачи высоких мощностных показателей.

Смысл работы моторов по циклу Аткинсона заключается в том, что впускные клапаны удерживаются в открытом положении немного дольше, что снижает степень сжатия и уменьшает расход топлива.

Такие моторы обычно встречаются у гибридных автомобилей, главным для которых является экологичность и малый расход топлива.

Результатом всех проведенных изменений стал двигатель, который способен на 27 процентов увеличить топливную экономичность в сравнении с 3,5-литровым V6 Nissan обладающего примерно так же мощностью и крутящим моментом. По информации Reuters, на пресс-конференции инженеры компании Nissan заявил, что новый двигатель обладает крутящим моментом сопоставимым с показателями современного турбодизеля, и при этом он должен быть дешевле в производстве, чем любой современный турбодизельный мотор.

Вот почему Ниссан делает такую большую ставку на разработанную систему, ведь в его представлении она имеет потенциал, способный частично заменить дизельные двигатели по многим параметрам использования, возможно, включая более дешевые варианты для стран, где бензин является основным видом топлива, примером такой страны может быть и Россия.

Если идея приживется, в будущем наверняка появятся двухцилиндровые бензиновые силовые агрегаты, которые неплохо подойдут для небольших легковых автомобилей. Это может стать одной из веток развития системы.

Гибкость двигателя кажется впечатляющей. Технически такого эффекта удалось добиться при помощи, особого рычага привода воздействующего на вал привода, изменяющего положение многорычажной системы, вращающейся вокруг главного подшипника шатуна. Справа к многорычажной системе крепится еще один рычаг идущий от электродвигателя. Он изменяет положение системы относительно коленчатого вала. Это отражено в патенте и чертежах Infiniti. Шток поршня имеет центральную поворотную многорычажную систему, которая способна изменять свой угол, что приводит к изменению эффективной длины штока поршня, что в свою очередь изменяет длину хода поршня в цилиндре, которое, что в конечном итоге, изменяет степень сжатия.

Двигатель, разработанный для Infiniti даже с первого взгляда, выглядит гораздо более сложным, чем его классический соплеменник. Косвенно догадку подтверждают в самом Ниссан. Они говорят, что экономически оправданно по такой схеме делать четырехцилиндровые моторы, но не более сложные V6 или V8. Стоимость всех систем привода шатунов может оказаться слишком высокой.

С учетом всего вышесказанного эта схема двигателя должна, нет, просто обязана, прижиться на гибридных автомобилях. Такая отдача мощности и экономичность будет непревзойденным бонусом для машин, оборудованных ДВС и электродвигателями.

Двигатель VC-T будет официально представлен 29 сентября на Парижском автосалоне.

P.S. Так вытеснит ли новый бензиновый двигатель дизельные моторы? Вряд ли. Во-первых, констукция бензинового мотора более сложная, а значит и более прихотливая. Ограничение по объему также ограничивает диапазон применения технологии. Производство дизельного топлива также никто не отменял, куда его девать, если все перейдут на бензин? Выливать? Складировать? И наконец, применение дизельных агрегатов (простой конструкции) отлично подходит для сложных природных условий, чего нельзя сказать о бензиновых ДВС.

Читать еще:  Лада гранта: замена ремня грм

Скорее всего уделом новой разработки станут гибридные автомобили и современные малолитражки. Что тоже по-своему немалая часть автомобильного рынка.

Системы изменения степени сжатия двигателя

Степень сжатия двигателя внутреннего сгорания тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания. Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации. Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках. При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это особенно сильно проявляется при работе на частичных нагрузках. Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей систем наддува сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом. При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается. В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно. При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени. Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля. Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рисунке.

Рис. Схема двигателя с изменяющейся степенью сжатия:
1 – шатун; 2 – поршень; 3 – эксцентриковый вал; 4 — дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный шатун 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с. при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем. Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей. Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере. Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4. Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Рис. Двигатель с изменяющейся степенью сжатия SAAB:
1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую.

Под нагрузкой, за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением.

Рис. Изменение подачи воздуха в двигатель SAAB при различных режимах:
1 – дроссельная заслонка; 2 – перепускной клапан; 3 – сцепление; а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен», двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма.

В данной конструкции передача движения от шатуна на поршни осуществляется через двойной зубчатый сектор 5. С правой стороны двигателя расположена опорная зубчатая рейка 7, на которую опирается сектор 5. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня цилиндра, который соединен с зубчатой рейкой 4. Рейка 7 соединена с поршнем 6 управляющего гидроцилиндра.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня 6 управляющего цилиндра, связанного с рейкой 7. Смещение рейки управления 7 вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степени сжатия от 7:1 до 20:1 за 0,1 с. В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Рис. Двигатель с изменяемой степенью сжатия VCR:
1 – коленчатый вал; 2 – шатун; 3 – зубчатый опорный ролик; 4 – зубчатая рейка поршня; 5 – зубчатый сектор; 6 – поршень управляющего цилиндра; 7 – опорная зубчатая рейка управления.

Двигатель с переменной степенью сжатия: особенности конструкции

Как может показаться на первый взгляд, современный двигатель внутреннего сгорания достиг высшей ступени своей эволюции. На данный момент серийно выпускаются различные бензиновые и дизельные моторы, появились гибридные установки, дополнительно реализована возможность перевести двигатель на газ.

Читать еще:  Низкая компрессия в дизельном двигателе

В списке наиболее значимых наработок за последние годы можно выделить: внедрение систем высокоточного впрыска под управлением сложной электроники, получение большой мощности без увеличения рабочего объема благодаря системам турбонаддува, увеличение количества клапанов на цилиндр, использование систем изменения фаз газораспределения и т.д.

Достаточно вспомнить попытки построить двигатель без коленвала и шатунов, избавиться от распредвала в устройстве ГРМ или динамично изменять степень сжатия двигателя. Сразу отметим, хотя одни проекты еще находятся в стадии разработки, другие уже стали реальностью. Например, двигатели с изменяемой степенью сжатия. Давайте рассмотрим особенности, преимущества и недостатки таких ДВС.

Читайте в этой статье

Изменение степени сжатия: зачем это нужно

Многие опытные водители знакомы с такими понятиями, как степень сжатия двигателя и октановое число для бензиновых моторов, а также цетановое число для дизельных. Для менее осведомленных читателей напомним, что степень сжатия представляет собой отношение объема над поршнем, который опущен в НМТ (нижняя мертвая точка) к тому объему, когда поршень поднялся в ВМТ (верхняя мертвая точка).

Бензиновые агрегаты имеют, в среднем, показатель 8-14, дизели 18 -23. Степень сжатия является фиксированной величиной и конструктивно закладывается во время разработки того или иного двигателя. Также от степени сжатия будут зависеть и требования к использованию октанового числа бензина в том или ином моторе. Параллельно учитывается и то, атмосферный двигатель или с наддувом.

Если говорить о самой степени сжатия, фактически это показатель, который определяет, насколько сильно будет сжиматься топливно-воздушная смесь в цилиндрах двигателя. Если просто, хорошо сжатая смесь лучше воспламеняется и полноценнее сгорает. Получается, увеличение степени сжатия позволяет добиться роста КПД двигателя, получить улучшенную отдачу от мотора, снизить расход топлива и т.д.

При этом топливо имеет так называемую «детонационную стойкость», то есть способность противостоять детонации. Если же сильно увеличить степень сжатия, тогда горючее может начать детонировать в двигателе при определенных режимах работы ДВС.

Результат — неконтролируемый взрывной процесс сгорания в цилиндрах, быстрое разрушение деталей мотора ударной волной, значительный рост температуры в камере сгорания и т.д. Как видно, сделать постоянной высокую степень сжатия нельзя именно по этим причинам. При этом единственным выходом в данной ситуации является возможность гибко изменять данный показатель применительно к разным режимам работы двигателя.

Такой «рабочий» мотор недавно предложили инженеры премиального бренда Infiniti (элитное подразделение Nissan). Также в аналогичные разработки были и остаются вовлечены другие автопроизводители (SAAB, Peugeot ,Volkswagen и т.д). Итак, давайте рассмотрим двигатель с изменяемой степенью сжатия.

Переменная степень сжатия двигателя: как это работает

Прежде всего, доступная возможность изменять степень сжатия позволяет в значительной мере увеличить производительность турбомоторов с одновременным уменьшением расхода топлива. В двух словах, в зависимости от режима работы и нагрузок на ДВС топливный заряд сжимается и сгорает в самых оптимальных условиях.

Когда нагрузки на силовой агрегат минимальны, в цилиндры подается экономичная «бедная» смесь (много воздуха и мало топлива). Для такой смеси хорошо подходит высокая степень сжатия. Если же нагрузки на мотор растут (подается «богатая» смесь, в которой больше бензина), тогда закономерно возрастает риск возникновения детонации. Соответственно, чтобы этого не произошло, степень сжатия динамично уменьшается.

Что касается самой реализации схемы, фактически задача сводится к тому, что происходит физическое уменьшение рабочего объема двигателя, однако сохраняются все характеристики (мощность, момент и т.д.)

Сразу отметим, над таким решением трудились разные компании. В результате появились разные способы управления степенью сжатия, например, изменяемый объем камеры сгорания, шатуны с возможностью подъема поршней и т.д.

  • Одной из самых ранних разработок стало внедрение дополнительного поршня в камеру сгорания. Указанный поршень имел возможность перемещаться, одновременно изменяя объем. Минусом всей конструкции стала необходимость устанавливать дополнительные детали в БЦ. Также сразу проявились изменения формы камеры сгорания, горючее сгорало неравномерно и неполноценно.

По указанным причинам данный проект так и не был завершен. Такая же участь постигла и разработку, которая имела поршни с возможностью изменения их высоты. Указанные поршни разрезного типа оказались тяжелыми, еще добавились трудности касательно реализации управления высотой подъема крышки поршня и т.д.

  • Дальнейшие разработки уже не затрагивали поршни и камеру сгорания, максимум внимания был уделен вопросу подъема коленчатого вала. Другими словами, стояла задача реализовать управление высотой подъема коленвала.

Схема устройства такова, что опорные шейки вала расположены в специальных муфтах эксцентрикового типа. Указанные муфты приводятся в движение посредством шестерен, которые связаны с электрическим двигателем.

Отметим, что было построено несколько прототипов на базе 1.8-литрового турбированного агрегата от Volkswagen, степень сжатия менялась от 8 до 16. Двигатель долго испытывали, но серийным агрегат так и не стал.

  • Еще одной попыткой найти решение стал двигатель, в котором степень сжатия менялась посредством подъема всего блока цилиндров. Разработка принадлежит бренду Saab, а сам агрегат чуть даже не попал в серию. Двигатель известен как SVC, объем 1.6 литра, агрегат с 5 цилиндрами, оснащен турбонаддувом.

Мощность составила около 220 л. с., крутящий момент чуть более 300 Нм. Примечательно то, что расход горючего в режиме средних нагрузок снизился почти на треть. Что касается самого топлива, появилась возможность заливать как АИ-76, так и 98-й.

Инженеры Saab разделили блок цилиндров, выделив две условные части. В верхней находились головки и гильзы цилиндров, тогда как в нижней части коленчатый вал. Своеобразным соединением этих частей блока с одной стороны был подвижный шарнир, а с другой особый механизм, оснащенный электроприводом.

На практике сами детали для подъема верхней части блока, а также и сам защитный кожух оказались весьма слабыми элементами. Возможно, именно это помешало мотору попасть в серию и проект дальше закрыли.

  • Очередную разработку далее предложили инженеры из Франции. Турбомотор с рабочим объемом 1.5 литра получил возможность менять степень сжатия от 7 до 18 и выдавал мощность около 225 л.с. Моментная характеристика зафиксирована на отметке 420 Нм.

Конструктивно агрегат сложный, с разделенным шатуном. В той области, где шатун крепится к коленвалу, деталь оснастили особым зубчатым коромыслом. В месте соединения шатуна с поршнем также была внедрена планка-рейка зубчатого типа.

С другой стороной к коромыслу была прикреплена рейка поршня, который реализовывал управление. Система приводилась от системы смазки, рабочая жидкость проходила через сложную систему каналов, клапанов, а также имелся дополнительный электропривод.

Читать еще:  Синхронизатор коробки передач: устройство, назначение и принцип работы

В двух словах, перемещение управляющего поршня оказывало воздействие на коромысло. В результате менялась и высота подъема основного поршня в цилиндре. Отметим, что двигатель также не стал серийным, а проект был заморожен.

  • Следующей попыткой создать двигатель с изменяемой степенью сжатия стало решение инженеров Infiniti, а именно двигатель VCT (от англ. Variable Compression Turbocharged). В этом моторе стало возможным менять степень сжатия от 8 до 14. Особенностью конструкции является уникальный траверсный механизм.

Управляет процессом контроллер, посылая сигналы на электродвигатель. Электромотор после получения команды от блока управления смещает тягу, а система рычагов реализует смену положения, что и позволяет менять высоту подъема поршня.

В результате агрегат Infiniti VCT с рабочим объемом 2.0 литра с мощностью около 265 л.с. позволил экономить почти 30% горючего сравнительно с аналогичными ДВС, которые при этом имеют постоянную степень сжатия.

Если производителю удастся эффективно решить имеющиеся на данный момент проблемы (сложность конструкции, повышенные вибрации, надежность, высокая конечная стоимость производства агрегата и т.д.), тогда оптимистичные заявления представителей компании вполне могут воплотиться в реальность, а сам двигатель имеет все шансы стать серийным уже в 2018-2019 году.

Подведем итоги

С учетом приведенной выше информации становится понятно, что двигатели с переменной степенью сжатия способны обеспечить значительное снижение расхода топлива на бензиновых моторах с турбонаддувом.

Другими словами, подобный ДВС вполне способен предложить все преимущества мощного бензинового высокооборотистого турбодвигателя. При этом по расходу топлива подобный агрегат может вплотную приблизиться к турбодизельным аналогам, которые сегодня популярны, в первую очередь, благодаря своей экономичности.

Форсирование двигателя. Плюсы и минусы доработки мотора без турбины. Главные способы форсирования: тюнинг ГБЦ, коленвал, степень сжатия, впуск и выпуск.

Устройство турбокомпрессора, главные элементы конструкции, выбор турбины. Преимущества и недостатки бензиновых и дизельных двигателей с турбонаддувом.

Особенности установки ГБО на мотор с турбонаддувом. Какое газобалонное оборудование лучше ставить на двигатели с турбиной. Советы и рекомендации.

Влияние степени сжатия на мощность и другие характеристики мотора. Тюнинг и увеличение степени сжатия, а также понижение параметра в отдельных случаях.

Увеличение мощности атмосферного и турбированного двигателя. Глубокий или поверхностный тюнинг ДВС. Модификация впускной и выпускной системы. Прошивка ЭБУ.

Возможность установки турбокомпрессора на двигатель с карбюратором. Основные преимущества и недостатки турбонаддува на карбюраторном авто.

Новости и тест-драйвы › Фирма Toyota запатентовала мотор с изменяемой степенью сжатия

Идея переменной степени сжатия далеко не нова и не раз воплощалась в металле как эксперимент. А получить такой результат можно разными способами. В серии мотор подобного типа первым запустит компания Infiniti. За ней, судя по всему, подтянутся другие производители. Например, Toyota. Она запатентовала в США шатун переменной длины и ДВС с таким узлом.

В шатун встроено несколько каналов для масла, переключающий механизм (номер 35 на рисунке ниже) с обратными клапанами и подпружиненным золотником. Его положение зависит от давления масла, подаваемого от коленчатого вала. Меняя давление, можно сдвигать этот штифт (перемещение идёт вдоль оси коленвала). Он будет соединять внутренние каналы в шатуне так, что масло сможет попадать в первый либо второй миниатюрный гидравлический цилиндры (33 и 34).

В гидравлических цилиндрах движутся поршни, соединённые маленькими рычагами с эксцентриком (32). В нём имеется отверстие для поршневого пальца (32d). Смещая его выше или ниже, можно менять положение поршня по отношению к шатуну, а фактически длину шатуна. Вот и весь секрет. Жаль, компания не уточняет, когда покажет подобную систему в металле. Но вряд ли столь интересная разработка останется на бумаге. Уж хотя бы ради опыта такую конструкцию стоит реализовать.

В бензиновом моторе Infiniti 2.0 VC-Turbo (272 л.с., 390 Н•м) изменение степени сжатия (от 8:1 до 14:1) достигнуто за счёт механизма из рычагов и эксцентриков, встроенного между коленчатым валом и самыми обычными шатунами. Он способен менять взаимное положение поршня, шатуна и шатунной шейки.

Чёрный изогнутый рычаг (внизу справа) связывает управляющий эксцентрик с актуатором. Последний по сигналам электроники мгновенно настраивает положение всей конструкции в пространстве, в зависимости от режима работы двигателя (низкая нагрузка, экономичная работа или режим высокой мощности). Заявлено, что такой агрегат на 27% эффективнее, чем классический V6 3.5, для замены которого и предназначен.

Леонид Попов, 1 сентября 2017 в 10:09. Фото: Toyota, USPTO, Infiniti

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Карта изменения степени сжатия мотора в зависимости от оборотов и нагрузки

Например, при малых нагрузках на мотор степень сжатия будет очень высокой — 14:1, чтобы максимально эффективно сжечь топливо. Но как только обороты и нагрузка на мотор возрастают, степень сжатия автоматически уменьшается.

И как это работает?

И просто, и сложно одновременно. Вместо прямого крепления шатуна на коленчатый вал надевается специальная деталь, напоминающую по принципу действия коромысло. Слева к «коромыслу» крепится шатун, который, как и раньше, передает возвратно-поступательные движения.

Двигаясь вверх или вниз, нижний рычаг меняет положение поршня относительно камеры сгорания.

Справа крепится рычаг, управляемый электромотором. Этот дополнительный рычаг может менять положение «коромысла» относительно коленчатого вала, а значит изменять ход поршня относительно камеры сгорания. Речь идет о диапазоне в какие-то пять миллиметров, но это позволяет варьировать степень сжатия в значительных пределах — от 8:1 до 14:1.

И при этом никаких недостатков?

Одной из тех, кто максимально близко подошел к созданию серийного мотора с изменяемой степенью сжатия, была марка Saab. У шведов, правда, относительно друг друга смещались верхняя и нижняя часть блока цилиндров. А в моторе Infiniti/Nissan изменения затронули конструкцию кривошипно-шатунного механизма.

Увы, в инженерном деле за все приходится чем-то платить. Конструкция двигателя VC-T механически сложнее и тяжелее на десять килограммов, чем традиционный ДВС, однако такой мотор все равно дешевле в производстве, чем современные дизели. Поэтому в Nissan и Infiniti надеются, что новая разработка постепенно станет их реальной альтернативой.

Необычный кривошипно-шатунный механизм занимает больше места в высоту, но за счет изменившегося характера возвратно-поступательных движений четырехцилиндровый VC-T получился очень хорошо сбалансированным. Это позволило инженерам убрать из мотора балансировочные валы и нивелировать разницу в размерах. В общем, проблем с упаковкой новинки в подкапотное пространство возникнуть не должно.

Вряд ли все покупатели смогут всмотреться в чертежи и восхититься механической красотой идеи, но точно оценят, если будет выгода в экономичности. Особенно в странах, где налог на автомобиль отталкивается от выбросов CO2.

И какова выгода?

Первой моделью, которая получит VC-T, станет кроссовер Infiniti QX50 следующего поколения. Стало быть, серийное производство агрегата может начаться уже в семнадцатом году.

Это будет двухлитровый турбированный агрегат мощностью около 270 лошадиных сил и с крутящим моментом в 390 Нм. Причем работать он будет в паре с вариатором.

Ссылка на основную публикацию
Adblock
detector